If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+35+5
We move all terms to the left:
0-(-16t^2+35+5)=0
We add all the numbers together, and all the variables
-(-16t^2+35+5)=0
We get rid of parentheses
16t^2-35-5=0
We add all the numbers together, and all the variables
16t^2-40=0
a = 16; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·16·(-40)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*16}=\frac{0-16\sqrt{10}}{32} =-\frac{16\sqrt{10}}{32} =-\frac{\sqrt{10}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*16}=\frac{0+16\sqrt{10}}{32} =\frac{16\sqrt{10}}{32} =\frac{\sqrt{10}}{2} $
| 24=-4(5b-6)-5(-6-b) | | 5040=126u | | 11=7(2m+3)+3(-1-7m) | | 2(x-5)+x=7(3-x)+9 | | 2q–3=11 | | x+9=x^2 | | 9x+10=-5x-17 | | 2(x-5)+x=7(3-x)+ | | 6+63/4x=27.75 | | t/5*5=10*5 | | 2m^2+2m−12=0 | | 5460=7m | | 3v-8v+7v=24 | | 2m2+2m−12=0 | | -3=2(v-5)+7(1-3v) | | -8(n-6)+6(2n-2)=60 | | 12.59=4.41+3t | | x3+x2+9x+9=0 | | 4+x/6=15 | | 1/3a+4=9 | | 311850=525h | | 2+y=4(3)-3y | | .4x=225 | | 7x2=-21 | | 0=12t-5t^2+32 | | 129-u=281 | | ,4x=225 | | x^2÷6-x+4÷3=0 | | -6n-20=-2n+4(1-3;) | | -8x-41=-10x+19 | | 10p-2(3p-)=4(3p-6)-8p | | 11.5-4y=48.5 |